Molecular Aspects of Bone Remodeling
نویسندگان
چکیده
Bone is a dynamic tissue in constant change; maintenance of bone mass throughout life relies on the bone remodeling process, which continually replaces old and damaged bone with new bone. This remodeling is necessary to maintain the structural integrity of the skeleton and allows the maintenance of bone volume, the repair of tissue damage and homeostasis of calcium and phosphorous metabolism. This process allows the renewal of 5% of cortical bone and trabecular 20% in a year, and although the cortical portion makes up most of the bone (75%), the metabolic activity is ten times greater in the trabecular since the relationship between surface and volume is greater in this, which is achieved by an annual renewal of 5-10% of bone volume and although this remodeling takes place throughout life, your balance is positive only during the first three decades. The skeleton is particularly dependent on mechanical informa‐ tion to guide the resident cell population towards adaptation, maintenance and repair; a wide range of cell types depend on mechanically induced signals to enable appropriate physiolog‐ ical responses. The bone remodeling has two main phases: a resorption phase, consisting of the removal of old bone by osteoclasts, and a later phase of formation of new bone by osteo‐ blasts that replaces the tissue previously resorbed. While osteoclasts are derived from hema‐ topoietic precursor cells and degrade the bone matrix, osteoblasts originate from mesenchymal stem cells, they deposit a collagenous bone matrix and orchestrate its mineralization. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of bone diseases such as osteoporosis, and to the development of interventions to improve bone strength. The clinical importance of bone formation has stimulated a lot of research aimed at understanding its mechanism. Much knowledge has been gained in the recent years, especially in relation with the signaling pathways controlling osteoblast differ‐ entiation. The purpose of this chapter is to review current knowledge on biochemical and
منابع مشابه
Medication-Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches
In recent years, medication-related osteonecrosis of the jaw (MRONJ) became an arising disease due to the important antiresorptive drug prescriptions to treat oncologic and osteoporotic patients, as well as the use of new antiangiogenic drugs such as VEGF antagonist. So far, MRONJ physiopathogenesis still remains unclear. Aiming to better understand MRONJ physiopathology, the first objective of...
متن کاملBone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system.
Bone is a dynamic tissue that undergoes constant remodeling. The appropriate course of this process determines development and regeneration of the skeleton. Tight molecular control of bone remodeling is vital for the maintenance of appropriate physiology and microarchitecture of the bone, providing homeostasis, also at the systemic level. The process of remodeling is regulated by a rich innerva...
متن کاملParallel mechanisms suppress cochlear bone remodeling to protect hearing.
Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material qual...
متن کامل2 Techniques and Applications of Adaptive Bone Remodeling
Despite the apparent inanimate nature of bone, bone is a dynamic living material constantly being renewed and reconstructed throughout the lifetime of an individual. Bone deposition and bone resorption typically occur concurrently, so that bone is remodeled continually. It is this adaptive remodeling process, driven partially in response to functional requirements, that distinguishes living str...
متن کاملBone mass regulation of leptin and postmenopausal osteoporosis with obesity.
BACKGROUND Leptin has been known to play a role in weight regulation through food intake and energy expenditure. Leptin also has an important role in bone metabolism. The role of leptin is determined by leptin receptors, either central or peripheral to the bones. DESIGN We discuss the role of leptin on bone and molecular genetics of osteoporosis in postmenopausal obese women. RESULTS The ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013